1. (3 Punkte) Definieren wir eine Relation R auf einer Menge A als antisyemmetrisch, wenn für alle $a, a' \in A$ gilt, $(a, a') \in R \iff (a', a) \notin R$.
Warum ist das keine besonders sinnvolle Definition? Machen Sie einen alternativen, besseren Vorschlag.

2. (3 Punkte) Beweisen Sie folgende Aussage:
Für zwei Mengen A und B existiert eine Injektion von A nach B genau dann, wenn es eine Surjektion von B nach A gibt.

3. (6 Punkte) Zeigen Sie, dass die auf Mächtigkeiten von Mengen definierte Relationen “\leq” und “\geq” jeweils transitiv sind.

4. (3 Punkte)
Zeigen Sie, dass die auf Mächtigkeiten von Mengen definierte Relation “$=$” eine Äquivalenzrelation ist.

5. (5 Punkte) Unter genau welchen Voraussetzungen an die Mengen A und B gilt, dass $|B^A| \leq |A|$? Beweisen Sie Ihre Antworten.

6. (5 Punkte) Wir kennen folgende Formel für Binomialkoeffizienten: $\sum_{k \leq N} \binom{n}{k} = 2^n$
Welche Voraussetzungen sind notwendig, damit für eine Menge A Folgendes gilt:
$\bigcup_{k \leq N} \binom{A}{k} = 2^A$
Beweisen Sie Ihre Antwort.

7. (8 Punkte) Zeigen Sie, dass die abzählbare Vereinigung von abzählbaren Mengen abzählbar ist. Also:
Wenn für jedes $i \in \mathbb{N}$ die Menge S_i abzählbar ist, dann ist auch $\bigcup_{i \in \mathbb{N}} S_i$ abzählbar.

8. (10 Punkte) Es sei $f : \mathbb{N} \to 2^\mathbb{N}$. Zeigen Sie, dass es überabzählbar viele Teilmengen $A \subseteq \mathbb{N}$ gibt, die nicht im Bild von f sind, also für alle $n \in \mathbb{N}$ gilt $f(n) \neq A$.

9. (10 Punkte extra) Beweisen Sie folgende Aussage für zwei Mengen A und B:
Es existieren eine Injektion von A nach B und eine Injektion von B nach A genau dann, wenn es eine Bijektion zwischen A und B gibt.

Hinweis: Nehmen Sie ohne Beschränkung der Allgemeinheit an, dass A und B disjunkt sind und betrachten Sie das in der Vorlesung besprochene Pfeilmodell für Funktionen.