Algorithms and Data Structures
Spring 2018

Exercises for Units 17 and 18, Solutions

Problem 1




Algorithms and Data Structures
Spring 2018

Exercises for Units 17 and 18, Solutions

Problem 2




Algorithms and Data Structures
Spring 2018

Exercises for Units 17 and 18, Solutions

9_3 qog\'*; Al ,.,;_f.

the. dwmeA boun& i

(mH«) roq.,ﬂ T

PG | i
% 5 ,’;ﬁ‘: $ 19 r w3 \"zr oy

'2, H)a"‘ 9\‘3 e *melh\




Algorithms and Data Structures
Spring 2018

Exercises for Units 17 and 18, Solutions

Problem 3




Algorithms and Data Structures
Spring 2018

Exercises for Units 17 and 18, Solutions




Algorithms and Data Structures
Spring 2018

Exercises for Units 17 and 18, Solutions

Problem 4

Point a)
extract = [4,3,2,6,8,1]

Point b)

Let us first give a brief explanation of the algorithm. The main idea is that, instead of finding
the number that is extracted each time there is such an operation, the algorithm finds, for
each number, the operation that extracts it, if the number is ever extracted. The extract_min
operation gets the smallest value that is already available. One other way to look at this is
that the smallest number is extracted by the next extract_min operation, and, in general,
each number is extracted by the next extract_min operation that does not extract a smaller
number.

With this in mind, we will prove that the algorithm is correct by contradiction. We assume
that there is some number that is not extracted correctly. Let z = extract[j] be such a
number, with minimal j, and let y be the number that should be in extract[j].

Now, there are two possible cases: either x < y or x > y. Let us start with z < y. We claim
that, if = is in K; when it is inserted into extract[j], then, when the algorithm started, it
must be that z € Ky, for some ¢ < j. This must be true, since the only operation that changes
the sets K is on line 7, and it simply moves elements from a set K; to a set Ky, for some
¢ > j. Therefore, if x € K, , £ > j originally, then it wouldn’t be possible for it to be in K,
at any point in the algorithm.

We conclude that, j-th extract_min could have extracted x instead of y, since the operation
may extract any element that is already available (that is, from any Ky, £ < j), that hasn’t
been extracted up to that point. Since extract is correct until position 7 — 1, by assumption,
x was not extracted by any previous operation, and therefore it cannot happen that = < y.

Now, we prove that > y cannot happen as well, and therefore, reach a contradiction. It
is clear from the algorithm that if a set is in some K; when the algorithm starts, then it is
always in some K, that is, it is never removed from all the sets. If y was the correct value
for extract[j], then it must be that y € K/, for some ¢ # j. Since extract is correct up to
j — 1, then it must be the case that £ > j. Furthermore, since y can be extracted (and should)
by the j-th operation, the it must have started at some set K,,, for some m < j. Therefore,
since ¢ > j, by some sequence of operations on line 7, y was moved from K,, to Ky. This
can only happen if K; was removed, or y would be moved into K instead. But K; cannot be
removed, since K is removed only when i = z, which happens after ¢« = y. We conclude that
this case cannot happen, and, since there is no other possible case, we reach a contradiction
on our assumption.



Algorithms and Data Structures
Spring 2018

Exercises for Units 17 and 18, Solutions

Point c)

We create n sets, one for each number, and then, using at most n — m union operations, get
m sets, one for each K;. We also store, for each set (in the representative element), the index
J, the representative elements of the next set (initially K1) and the previous set (initially
K;_1). When computing the union of sets K;, Ky, and if we store them as K, (for j < £, as is
the case in the algorithm), we simply keep the index and next element of Kp, set the previous
element to the previous of K, and set the next element of the previous element of K to be
Ky. To find the value of £, on line 6, we use the index of the next representative element, which
can be obtained in constant time.

Now, during the course of the algorithm, we run n make_set operations, at most n union
operations (at most n —m to obtain sets for each K, and then m more, one for each number
that is extracted), and n find_set operations. All these operations take O(na(n)) time.



