
Algorithms and Data Structures
Spring 2018

Exercises for Units 17 and 18, Solutions

Problem 1

1



Algorithms and Data Structures
Spring 2018

Exercises for Units 17 and 18, Solutions

2



Algorithms and Data Structures
Spring 2018

Exercises for Units 17 and 18, Solutions

Problem 2

1. Let H be a pairwise independent set of functions, and let h ∈ H be selected uniformly at
random. Then for all x 6= y ∈ U ,

P [h(x) = h(y)] = P

[
t⋃

i=1

{h(x) = i ∧ h(y) = i}

]

≤
t∑

i=1

P [h(x) = i ∧ h(y) = i]

≤
t∑

i=1

1

t2

=
1

t

since h was selected uniformly at random, for any pair of keys x 6= y, there are at most |H|/t
functions h ∈ H such that h(x) = h(y); so H is universal.

2. The converse is not true. Consider the following counterexample: the universe U consists of
the first n natural numbers, the table size is n, and the set H consists of all the perfect hash
functions for U , i.e. there are n! functions, each of which is essentially a permutation of U .
Clearly H is universal, since it produces no collisions. But for i 6= j, selecting h ∈ H uniformly
at random,

P [h(x) = i ∧ h(y) = j] =
(n− 2)!

n!

=
1

n(n− 1)

>
1

n2

so H is not pairwise independent.

3



Algorithms and Data Structures
Spring 2018

Exercises for Units 17 and 18, Solutions

Problem 3

In the following solution T1[0..3] corresponds to T [0..3] and T2[0..3] corresponds to T [4..7].

4



Algorithms and Data Structures
Spring 2018

Exercises for Units 17 and 18, Solutions

5



Algorithms and Data Structures
Spring 2018

Exercises for Units 17 and 18, Solutions

Problem 4

A first idea is to simply rebuild the entire heap after n creDeaseKey operations thereby removing
hollow nodes. This would take O(n) time, which amortized over the in DecreaseKey operations
means constant amortized time. However, this straightforward method causes the constant time for
DecreaseKey to be valid in the amortized sense only and not in the worst case sense, which was
true initially.
How about waiting until the next Delete or MinDelete operation, which would then be allowed
to take that much amortized time. The problem is that during the wait a superlinear number
of DecreaseKey operations may happen, upping the memory usage in a superlinear way. The
obvious way around this is to observe, that when a DecreaseKey operation is applied to a node
in the root list, then there is really no need to make the node hollow and move the item to a
new node. You can simply decrease the key (and of course compare with and possibly update the
minpointer). This way between two delete operations at most n extra nodes can be created, and
the restructuring can wait until the next delete operation.

Problem 5

The answer is NO!
Because otherwise you could sort n numbers using comparisons in linear time as follows: build a
hollow heap for those number. Then repeat the following n times: do a FindMin (which only need
constant time), report that number, and then do an IncreaseKey of that item to +∞ (which
supposedly only takes constant time also).

Problem 6

This question was a mistake.
One interesting observation is, though, that linking can be done in a reasonable way in O(k) time.
You want of course, that all keys stored in a node are larger than all keys in all the nodes of the
subtree. This can be maintained during linking of two nodes by considering the union of the keysets
of the two nodes, and storing the smallest k of these 2k keys with the winner node, and the other
k with the loser node. Using fast median finding, these two sets can be computed in O(k) time.

6


