

1. In class we showed how a polynomial f of degree n-1 can be simultaneously evaluated at n different values in time $O(n \log^3 n)$. This relied on the fact that if a is a root of a polynomial d then f(a) = r(a), where r is the remainder of f divided by d.

Show that actually a time bound of $O(n \log^2 n)$ can be achieved.

2. Show that n! can be computed (as a real number) in time $O(\sqrt{n}\log^2 n)$ without the use of floor operations, i.e. no conversions from reals to integers, etc.

You may assume that a complex N-th primitive root of unity can be obtained in O(1) time for any integer N.

3. In the exercises for a previous unit we considered the so-called " $a + b \neq c$ "-problem. Recall that it takes as input three sorted sets A, B, C of $\Theta(n)$ numbers each and asks whether for all $a \in A, b \in B$, and $c \in C$ we have $a + b \neq c$.

For a model of computation that allowed only comparisons (or queries) of the form x + y < z, x + y > z, or x + y = z with $x \in A$, $y \in B$, and $z \in C$, but no other operations, you proved a lower bound of $\Omega(n^2)$ for the worst case time for solving this problem. This lower bound actually even holds if all the numbers involved are integers from [0..M] with $M = \Theta(n)$.

Show that if arithmetic operations are allowed and the members of A, B, C are integers from the range [0..M] with $M = \Theta(n)$, then it is possible to solve this problem in $O(n \log n)$ time.

4. You have a set of n items numbered from 1 to n, where item i has weight $w_i > 0$ and all the weights are distinct. You have a truck that can carry a load of at most W. You want to load the truck with as many of the n items as possible while observing this total weight limit W.

Give an O(n) time algorithm that determines the maximum set of items that can be loaded onto the truck.